

Sustainable Surfactants

For Emulsion Polymerization

Kathie Hacek Market Manager, EP/CASE Dr. Andy Sun Business Manager, HI&I, Vehicle Care, Oil & Gas, EP/CASE

Outline

- A Brief Introduction of Colonial Chemical, Inc.
- Sustainable Technology Platform
- EP Product Portfolio

Quick Facts

- 35-year-old specialty chemical manufacturing company
- Global supplier to over 930 manufacturers in personal care, HI&I markets
- Represented through Colonial sales personnel, distributors worldwide
- Almost 200 employees in manufacturing and administration in Tennessee and other locations
- Colonial Chemical M.E. Arabia
- Warehousing in Los Angeles,
 Birmingham UK, Rotterdam Netherlands

Quick Facts

- Over 100,000 sq. ft. (9300 m²) of manufacturing and administrative offices
 - and growing, additional 25,000 sq. ft in completion
- Access to major SE distribution arteries and rail spur construction almost complete
- Optimum climate conditions for manufacturing
- Significant capital reinvestment of profits into assets for growth
 - Company will more than double in size in the next five years

Colonial Chemical M.E. Arabia

- Joint venture established for Saudi Arabia and Middle East operations
- Nine-acre manufacturing plant under construction
- General Manager on site
- Operations anticipated to commence Q3 2022

Industries Served

Personal Care, Cosmetics

- Hair Care
- Body Wash
- Baby Products
- Creams and Lotions
- Conditioners
- Pharmaceuticals
- OTC Products

Industrial Chemicals

- Household, Industrial and Institutional Cleaners
- Spray, High Pressure Cleaning
- Agricultural Emulsifiers
- Water Treatment
- Transportation Cleaners
- Dairy Cleaners
- Asphalt Products
- De-icing Fluids
- Intermediates

Vehicle Care

- Vehicle cleaning, drying, protection
- Competitive on pricing and cost-in-use
- Innovator in vehicle care products and applications
- Environment friendly and certified surfactants
- Nonionic, amphoteric surfactants and cationic emulsifiers

Industrial Lubrication

- Corrosion Inhibitors
 - Oil soluble
 - Water soluble
- Aerosol can
- Metalworking Lubricants
 - Soluble oil emulsifiers
 - Anti-wear additives
 - Extreme pressure additives (EP Additives)

Industries Served cont.

CASE and EP

- Emulsifying
- Stabilizing
- Wetting
- Dispersing
- Specialty monomers
- Epoxy diluents

Oilfield Operations

- Drilling and well-bore additives
- Corrosion Inhibitors & Lubricants
- Production Chemicals
- Cleaning and Remediation

Other industries

- Medical
- Pet Products and Animal Health
- Plastics Lubricants
- Electronics Cleaning
- Mining
- Fire Fighting Foams
- Agriculture

Colonial Chemical Products

- Meet customer demands for options, features, quick order fulfillment, and fast delivery for broad surfactant requirements
- Marketed through comprehensive branding program that differentiates the qualities of the product to the customer
- Competitively priced
- Emphasis on emerging green chemistry market, i.e. safe, innovative, naturally-derived surfactants alongside traditional chemistry
 - 12 Principles of Green Chemistry
- Offering the *mildest* chemistry found in the marketplace for Personal Care and HI&I applications

Regulatory and NGO Approvals

- Worldwide regulatory approvals on most products
 - TSCA, DSL, **REACH**, ENCS, NZIoC, IECSC, and others
- CleanGredients
- USDA BioBased Approved
- Whole Foods Market® Premium Body Care
- NSF/ANSI 305-2012
- EcoCert Certified
- Kosher Certified
- Halal Certified Facility
- RSPO
- USDA NOP Organic Certified Facility

EPA Green Chemistry Challenge Award Winner

- Suga®Boost 030 and 050 were awarded the 2021 EPA Green Chemistry Challenge For Designing Greener Chemicals
 - Consume less energy to create
 - Biodegradable
 - Derived from plant-based materials
 - Performance that demonstrates potential to replace EOcontaining surfactants such as SLES and APEs.
- Additional chemistries have been recognized with the P2 (Pollution Prevention) Award previously

Functionalized APG Surfactants Provide Solutions

Increasingly Stringent Regulation

- Alkyl phenol ethoxylates (APE/NPE, reproduction issue and 1,4-dioxane)
- Alcohol Alkoxylates (1,4-dioxane)
- DEA in amides
- Dichloro acetic acid (DCA) in betaines

Public Safety Concerns

- Carcinogenic (1,4-dioxane, DEA, NPE, DCA, SLES, etc.)
- Irritators and sensitizers (sulfate, ethoxylates, etc.)

Environment Concerns

- Soil, water, air contamination
- Aqua toxicity
- VOC
- Toxic residuals in degradation
- Reclamation of resources and green cycle

Performance in Green Surfactants

Functionalized APG Chemistry (patented)


Suga®Nate • APG Sulfonates Suga®Fax • APG Phosphate Esters Suga®Citrate • APG Citrate

Poly Suga®

Poly Suga®Glycinate • Poly APG Amphoterics
Poly Suga®Mulse • EO-Free Poly APG Emulsifiers
Poly Suga®Nate • Poly APG Sulfonates
Poly Suga®Phos • Poly APG Phosphates
Poly Suga®Quat • Poly APG Quats

Suga®Boost

High Performance Boosting Blends


Alkyl Poly Glucoside

Suga® and Poly Suga®

- 100% or close to 100% naturally-derived
- Very mild to eyes and skin contact, over harsh sulfates, alkoxylates, coco DEA
- No GHS warning labels for some products
- Free of Prop 65 components (1,4-Dioxane, DEA, DCA, etc.)
- Stable in wide range of pH
- Stable in hard water and electrolyte solution without hydrotropes
- Great environmental profiles (readily biodegradable, low aqua toxicity, VOC-free, direct release)
- Broad regulation approval (EPA Safer Choice, USDA Biobased, EU Detergent Directive)
- Compatible with majority of surfactants
- Variety of chemistries that meet different formulation and performance demands
- Superior Performance Over Traditional Surfactants

Surfactants for Emulsion Polymerization

Overview of EP


- Emulsion Polymerization
 - The process of synthesizing hydrophobic polymers while emulsified in water using monomer and surfactant
- Uses Include:
 - Architectural Paints
 - Adhesives
 - Sealers and Waterproofing Systems
 - Cement Additives
 - Paper Binders
 - Textile Coatings

Industry Trends

- Diminishing use of alkylphenol ethoxylates (APEOs)
- VOC reduction and non-fugitive
- Increasing consumer preference for environmentally friendly products to provide safe and healthy environment (waterbased)
- Demand for improved quality of biobased and renewable raw materials

Colonial Product Lines for EP/CASE

Green Product Lines

Cola®Tex

Poly Suga®Sperse

Suga[®] Fax

Suga[®] Nate

Poly Suga®Nate

Poly Suga®Phos

Poly Suga®Mulse

Poly Suga®Glycinate

Cola®Dil MOD 8

Green Emulsifiers

Green Dispersants

APG Phosphate

APG Sulfonates

Poly APG Sulfonate

Poly APG Phosphate

Poly APG Oleate

Poly APG Amphoteric

Green Reactive Diluent

Others

Cola[®]Mer

Cola[®]Dil

Cola[®]Fax

Cola[®] Carb

Cola®Wet

Cola[®]Cor

Cola[®]Zoline

Specialty Reactive Additives

Epoxy Reactive Diluents

Phosphate Esters

Alcohol Ether Carboxylate

Sulfosuccinates

Corrosion Inhibitors

Imidazolines

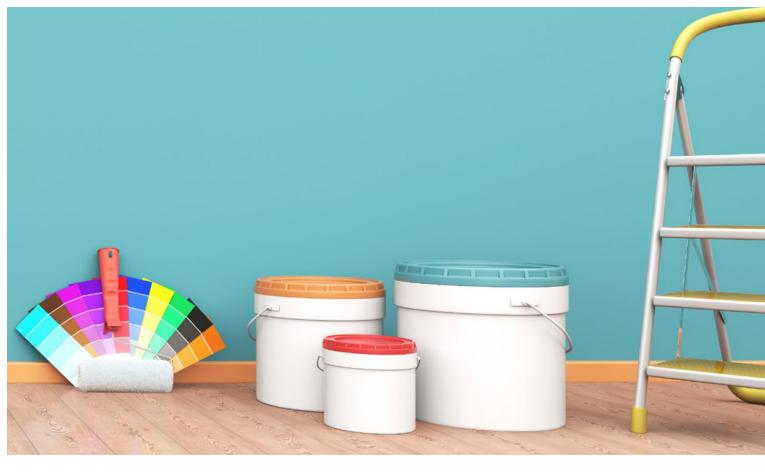
Cola®Tex 127

- Proprietary Blend of Functionalized Alkyl polyglucoside with anionic surfactant.
- Nonionic/Anionic
- Effective Primary Surfactant for Acrylic,
 Styrene Acrylic, Vinyl Acrylic, and Styrene
 Butadiene Formulations ≥55%TSC
- Made from 69% plant-based materials by weight.
- 100% Biodegradable
- Single product to make acrylic latex formulations for excellent cost/performance
- No EO-1,4 Dioxane or other components of Prop 65 concern

- No Alkyl Phenol Ethoxylate (APE)
- No Sulfates
- Small particle size and low coagulation formation
- Predominately derived from vegetable sources
- Outstanding human and environmental safety
- Simplifies and speeds the manufacturing process
- Anionic and nonionic compatible
- Easy to handle
- Stable at high and low pH
- Patent pending

Cola®Tex 127 – Starting Formulations

Acrylic Formulation					
	MASS (g)	Percent			
REACTOR:					
Water	165	22.210556			
ColaTex 127	0.2	0.0269219			
Sodium Persulfate	0.37	0.0498055			
PRE-EMULSION:					
Water	47	6.3266432			
ColaTex 127	14.6	1.9652977			
Methyl Methacrylate	177.95	23.953748			
Butyl Acrylate	210.52	28.337977			
Acrylic Acid	15	2.0191415			
INITIATOR:					
Water	110	14.807037			
Sodium Persulfate	2.25	0.3028712			



							CaCL2	STABIL	_ITY
LATEX	g/L COAGULUM	SOLIDS	VISCOSITY	SURFACE TENSION	NH3 ADJUSTED PH	FREEZE/THAW STABILITY	10%	20%	30%
COLATEX 127 ACRYLIC	0.51	54.85	345	37	7.21	3 CYCLES	PASS	PASS	PASS

Cola®Tex 127 – Starting Formulations

Styrene Acrylic Formulation					
MASS (g) Percent					
REACTOR:					
Water	165	22.312072			
ColaTex 127	0.2	0.0270449			
Sodium Persulfate	0.37	0.0500331			
PRE-EMULSION:					
Water	47	6.3555598			
ColaTex 127	14.6	1.9742803			
Sytrene	185.52	25.086882			
Butyl Acrylate	202.95	27.443848			
Acrylic Acid	10.12	1.3684737			
INITIATOR:					
Water	110	14.874714			
Sodium Persulfate	3.75	0.5070925			

							CaCL2	STABI	LITY
LATEX	g/L COAGULUM	SOLIDS	VISCOSITY	SURFACE TENSION	NH3 ADJUSTED PH	FREEZE/THAW STABILITY	10%	20%	30%
COLATEX127 STYRENE ACYLIC	<0.1	55	980	41.15	6.95	3 CYLCES	FAIL	FAIL	FAIL

Poly Suga®Mulse D9

- Sorbitan Oleate Decylglucoside Crosspolymer
 - 100% Bio-Based
 - US Patent 8,268,766

Poly Suga®Mulse D9 EO-Free Emulsifier

- Sorbitan Oleate Decylglucoside Crosspolymer (Patent Pending)
- Nonionic
- 100% Biobased
- Environmentally safe
- Alkyl phenol ethoxylate (APE) free
- Easy to handle
- Blended with anionic surfactants, the product will work well with both acrylic and styrene acrylic formulations as a co-surfactant.
- EO Free and 1,4-Dioxane Free alternative for Alkyl Phenol Ethoxylates and Fatty alcohol ethoxylates.

Poly Suga®Mulse D9

Typical Properties	Poly Suga®Mulse D9
Appearance	Clear viscous liquid
pH (10% aqueous)	6.0 - 8.0
Solids, %	65 - 68
Color, Gardner	4 Maximum

Ross-Miles Foam Height (1% active solution Poly Suga®Mulse D9), mm

Immediate	185
1 minute	170
5 minutes	165
Draves Wetting (1 % active), seconds	2.1
HLB (estimated)	13
HET-CAM (2.5% solution)	2.25

Starting Formulation

Example 6: Styrene-Acrylic Emulsion Polymerization utilizing **Poly Suga**° **Mulse D9** as co-surfactant

	INGREDIENT	Wt. %	Wt. gm
Rea	actor Charge		
1	Water	34.28	617.04
2	Cola®Fax 3397 / Alcohol Ethoxylate Phosphate Ester	0.04	0.72
Pre	e-emulsion		
1	Butyl Acrylate	15.50	279.00
2	Styrene	21.68	390.24
3	Dodecyl Mercaptan	0.22	3.96
4	Acrylic Acid	1.18	21.24
5	Water	7.75	139.50
6	Cola®Fax 3397 / Alcohol Ethoxylate Phosphate Ester	1.49	26.82
7	Poly Suga®Mulse D9 / Sorbitan Oleate Decylglucoside Crosspolymer	0.50	9.00
8	Sodium Hydroxide	0.11	1.98
lni	tiator		
1	Water	5.83	104.94
2	Sodium Persulfate	0.46	8.28
	TOTAL	100.00	1800.00

Suga®Nate 160NC

- Sodium Laurylglucosides Hydroxypropylsulfonate
 - 100% Bio-Based

$$C_{12}H_{25} = 0$$

$$OH$$

$$OH$$

$$HO$$

$$OH$$

$$OH$$

$$HO$$

$$O$$

$$Na^{\dagger}$$

$$O$$

Suga®Nate 160NC APG Sulfonate

- Sodium Laurylglucosides Hydroxypropylsulfonate (Patent Pending)
- Anionic
- 100% Biobased, Environmentally safe with low aquatic toxicity
- Alkyl phenol ethoxylate (APE) free
- Easy to handle
- Use alone in low solids styrene acrylic formulations, or as a secondary surfactant in higher solids formulations.
- Creates binomial particle size distribution.

Suga®Nate 160NC

Typical Properties	Suga®Nate 160NC	
Appearance	Clear liquid	
Color, Gardner	< 1	
Solids %	39.0 – 41.0	
Viscosity (cps), 25°C	7,500	
Odor	mild, fatty alcohol	
pH (10% aq)	6.0 – 8.0	
Ross Miles Foam Height (1%, 25C, ta	p water), mm	
Immediate	155	
1 min.	152	
5 min.	150	
Draves Wetting (1% active), sec.	7.2	

GHS Warning Labels

Starting Formulation

Example 3: Styrene-Acrylic Paint Emulsion Polymerization utilizing low levels of **Suga®Nate 160NC**

	TOTAL	100.00	3006.80
2	Sodium Persulfate	0.47	14.10
1	Water	5.89	177.00
lni	tiator		
6	Suga®Nate 160NC / Sodium Laurylglucosides Hydroxypropylsulfonate	0.65	19.60
5	Water	7.85	236.00
4	Acrylic Acid	1.20	36.00
3	Dodecyl Mercaptan	0.47	14.10
2	Styrene	21.95	660.00
1	Butyl Acrylate	15.70	472.00
Pre	e-emulsion		
2	Suga®Nate 160NC / Sodium Laurylglucosides Hydroxypropylsulfonate	0.03	1.00
1	Water	45.79	1377.00
Re	actor Charge		
	INGREDIENT	Wt. %	Wt. gm

Suga®Fax D10NC

- Sodium Decylglucosides Hydroxypropyl Phosphate
 - 100% Bio-Based

Suga®Fax D10 NC APG Phosphate Ester

- Sodium Decylglucoside Hydroxypropylphosphate (Patent Pending)
- Anionic
- 100% Biobased
- Environmentally safe
- Alkyl phenol ethoxylate (APE) free
- Easy to handle
- Stable at high and low pH
- Alternative for traditional phosphate
- Use alone for low solids styrene acrylic latex, or in combination with other surfactants in higher solids latexes
 - -Creates binomial particle size distribution

Suga®Fax D10NC Properties

Typical Properties	Suga®Fax D10NC
Color, Gardner	< 1
Activity, %	40
pH (10% aqueous)	7.5
Appearance, 10% aq.	Clear

Ross-Miles Foam Height (1%, 25C, tap water), mm

Immediate	155		
1 minute	145		
5 minutes	140		
Draves Wetting (1%	Immediate		
Solubility	50% NaOH	Soluble	
(10% active)	25% H ₂ SO ₄	Soluble	

Starting Formulation

Example 7: Styrene-Acrylic Emulsion Polymerization utilizing low levels of **Suga®Fax D10NC**

	INGREDIENT	Wt. %	Wt. gm
Re	actor Charge		
1	Water	45.79	1377.70
2	Suga®Fax D10NC / Sodium Decylglucoside Hydroxypropylphosphate	0.03	0.90
Pre	e-emulsion		
1	Butyl Acrylate	15.70	471.00
2	Styrene	21.95	658.50
3	Dodecyl Mercaptan	0.47	14.10
4	Acrylic Acid	1.20	36.00
5	Water	7.85	235.50
6	Suga®Nate 160NC / Sodium Laurylglucosides Hydroxypropylsulfonate	0.65	19.50
lni	tiator		
1	Water	5.89	176.70
2	Sodium Persulfate	0.47	14.10
	TOTAL	100.00	3000.00

Poly Suga®Glycinate C

- Sodium Bis-Hydroxyethylglycinate Coco-Glucosides Crosspolymer
 - US Patent 6,958,315

Poly Suga®Glycinate C Poly APG Amphoteric

- Sodium Bis-Hydroxyethylglycinate Coco-Glucosides Crosspolymer
- Amphoteric
- Environmentally safe
- Alkyl phenol ethoxylate (APE) free
- Easy to handle
- Works well in acrylic formulations at low solids levels and can be used in combination with other surfactants for higher solids formulations.

Poly Suga®Glycinate C

Typical Properties	Poly Suga®Glycinate C	
Appearance	Clear, amber liquid	
Color, Gardner (ASTM D1544-98)	1	
Solids %	40	
pH (10% aqueous)	7.0	

Ross-Miles Foam Height (1%, 25C, tap water), mm

Immediate	180	
1 minute	165	
5 minutes	160	
Draves Wetting (1 % active), seconds	3.3	

Starting Formulation

Example 5: Acrylic Emulsion Polymerization utilizing low levels of Poly Suga®Glycinate C

	INGREDIENT	Wt. %	Wt. gm
Rea	actor Charge		
1	Water	34.50	621.00
2	Sodium Persulfate	0.04	0.72
3	Poly Suga®Glycinate C / Sodium Bis-Hydroxy- ethylglycinate Coco-Glucosides Crosspolymer	0.03	0.54
Pre	e-emulsion		
1	Methyl Methacrylate	29.01	522.18
2	Methacrylic Acid	0.87	15.66
3	Acrylic Acid	0.87	15.66
4	Butyl Acrylate	12.39	223.02
5	Water	8.13	146.34
6	Poly Suga®Glycinate C / Sodium Bis-Hydroxy- ethylglycinate Coco-Glucosides Crosspolymer	1.00	18.00
lni	tiator		
1	Water	12.95	233.10
2	Sodium Persulfate	0.21	3.78
	TOTAL	100.00	1800.00

Summary of Green Surfactant Technology

• Cola®Tex 127

- Works alone in all types of latexes
- 69% biobased, 100% Biodegradable

Poly Suga®Mulse D9

- APE, EO, 1,4-Dioxane free alternative for Alkyphenol ethoxylate and Fatty Alcohol Ethoxylates.
- 100% biobased

Suga®Nate 160NC

- Works alone in low solids styrene acrylics, or in combination with other surfactants in higher solids latexes
- 100% biobased

• Suga®Fax D10NC

- Works alone in low solids styrene acrylics, or in combination with other surfactants in higher solids latexes
- 100% biobased

Poly Suga®Glycinate C

- Works alone in low solids acrylics, or in combination with other surfactants in higher solids latexes
- 100% biobased

Please contact for Brochures, Formularies, TDS, SDS

kathie.hacek@colonialchem.com andy.sun@colonialchem.com

www.colonialchem.com

Thank you!

