

Long Chain Amphoterics

Safe, Effective Additives for Cleansing Formulations

Dennis Abbeduto – Manager, Care Chemicals

Global Handwashing Day – October 15th

Global Handwashing Day

Why are clean hands still important?

While we've made significant progress in promoting handwashing with soap, our journey is far from over. Clean hands remain a fundamental defense against the spread of infections, illnesses, and harmful germs. Whether in hospitals, schools, or in everyday interactions, practicing handwashing with soap contributes to better health outcomes and a safer world for everyone. As the world looks toward key milestones in hand hygiene progress, we urge you to reflect this question, "Why are clean hands still important?" For us, the answer lies in our collective responsibility to safeguard public health, prevent infections, and promote wellbeing.

TAKE ACTION

https://globalhandwashing.org/handwashing-handbook/

Enabling Sustainable Product Design

- Waterless
- Package-free
- Biodegradable
- High Biobased
- Socially Responsible
- Upcycled Ingredients
- Environmentally Benign
- Transparent Supply Chain
- Improved Consumer Safety

All About Amphoterics

Amphowhatzit?

Amphoteric

- Oxford English Dictionary – (of a compound, especially a metal oxide or hydroxide) able to react both as a base and as an acid

Zwitterion

- Merriam-Webster Dictionary – a dipolar ion

Zwitterionic Surfactants

- Wikipedia – Zwitterionic (ampholytic) surfactants have both cationic and anionic centers attached to the same molecule. The cationic part is based on primary, secondary, or tertiary amines or quaternary ammonium cations. The anionic part can be more variable and include sulfonates, as in the sultaines CHAPS (3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate) and cocamidopropyl hydroxysultaine. Betaines such as cocamidopropyl betaine have a carboxylate with the ammonium. The most common biological zwitterionic surfactants have a phosphate anion with an amine or ammonium, such as the phospholipids phosphatidylserine, phosphatidylethanolamine, phosphatidylcholine, and sphingomyelins.

Amphoterics – Numerous Known Formulation Benefits

- Mitigate irritation of anionic surfactants
 - Significant synergistic reduction of irritation
 - Larger mixed micelles
 - Reduced CMC of mixture
- Increase viscosity building of anionic surfactants
 - Reduce added salt
 - Larger mixed micelles
- Improve foam
 - Reduce liquid drainage (stability)
 - Shrink bubble size (cushion)
 - Increase overall foam (volume)

Variety In Theory But Not Practice

- Three "coconut" based products dominate usage
- Cocamidopropyl Betaine
 - Industry workhorse for many decades
 - Lauramidopropyl functionally mostly identical
- Cocamidopropyl Hydroxysultaine
 - Replacing betaine in many applications
 - Less negative press, fewer restrictions
- Disodium Cocoamphodiacetate
 - Primarily used in wipes and ultra-mild cleansers

$$O \qquad O \qquad Na^{\dagger}$$

$$O \qquad Na^{\dagger}$$

$$O \qquad Na^{\dagger}$$

$$O \qquad Na^{\dagger}$$

Some Additional Options

- Disodium Cocoamphodiproprionate
 - "Salt-free" amphoteric
 - Very similar structurally to diacetate
 - Different functionally, especially viscosity
- Cocamidopropyl PG-Dimonium Chloride Phosphate
 - "Phosphobetaine"
 - Structurally similar to phospholipids
 - Chemistry supports multiple "tail" groups
- Cocamidopropylamine Oxide
 - The surfactant oddball
 - Becomes zwitterionic in acid conditions, otherwise nonionic
- Many can be produced from straight tertiary amines (vs amidoamine)

$$Na^{+}$$
 Na^{+}
 Na^{+}
 Na^{+}

$$HN$$
 O
 H_3
 C
 CH_3

Coco is Great But...

- Coconut/Lauric represents a small portion of available feedstocks
- The majority of vegetable/seed oils are dominated by C16 and longer fatty acids
- Soft oils like Safflower and Soybean are rich sources of Polyunsaturated Fatty Acids (PUFAs)
- PUFAs can be hydrogenated to Stearic Acid
- Some soft oils like Grapeseed Oil can be recovered from waste
- These oils are not expected to perform similarly to coconut/lauric, due to longer alkyl chains
- Actual performance of long chain amphoterics has not been thoroughly investigated

Trade Name	INCI	Appearance	Co-solvent	Global Clearances	ISO 16128
ColaLipid GS	Sodium Grapeseedamidopropyl PG- Dimonium Chloride Phosphate	Clear to Hazy Liquid	Biorenewable Propylene Glycol	Globally Approved, inquire for China	0.91

Trade Name	INCI	Appearance	Co-solvent	Global Clearances	ISO 16128
ColaLipid GS	Sodium Grapeseedamidopropyl PG- Dimonium Chloride Phosphate	Clear to Hazy Liquid	Biorenewable Propylene Glycol	Globally Approved, inquire for China	0.91
ColaLux SAO	Soyamidopropylamine Oxide	Clear Liquid	Ethanol	Global Except no REACH registration	0.82

Trade Name	INCI	Appearance	Co-solvent	Global Clearances	ISO 16128
ColaLipid GS	Sodium Grapeseedamidopropyl PG- Dimonium Chloride Phosphate	Clear to Hazy Liquid	Biorenewable Propylene Glycol	Globally Approved, inquire for China	0.91
ColaLux SAO	Soyamidopropylamine Oxide	Clear Liquid	Ethanol	Global Except no REACH registration	0.82
ColaLux SO	Stearamine Oxide	White Paste (RT)	Propylene Glycol	Globally Approved, inquire for REACH	0.86

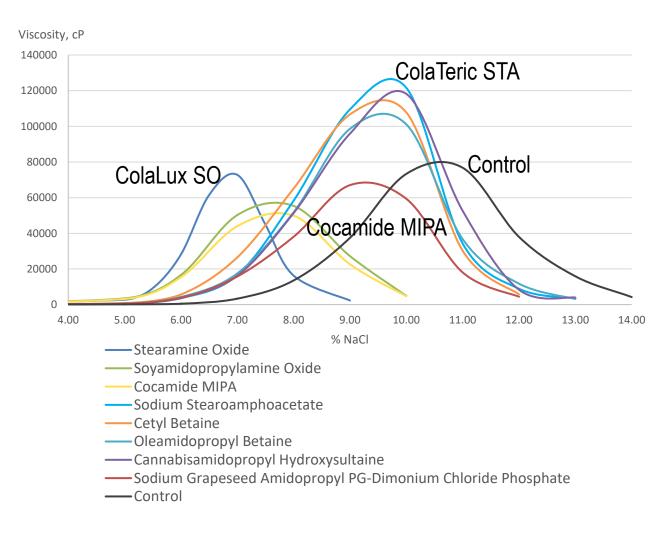
Trade Name	INCI	Appearance	Co-solvent	Global Clearances	ISO 16128
ColaLipid GS	Sodium Grapeseedamidopropyl PG- Dimonium Chloride Phosphate	Clear to Hazy Liquid	Biorenewable Propylene Glycol	Globally Approved, inquire for China	0.91
ColaLux SAO	Soyamidopropylamine Oxide	Clear Liquid	Ethanol	Global Except no REACH registration	0.82
ColaLux SO	Stearamine Oxide	White Paste (RT)	Propylene Glycol	Globally Approved, inquire for REACH	0.86
ColaTeric CMB	Cetyl Betaine	Clear Liquid	None	Globally Approved	0.66

Trade Name	INCI	Appearance	Co-solvent	Global Clearances	ISO 16128
ColaLipid GS	Sodium Grapeseedamidopropyl PG- Dimonium Chloride Phosphate	Clear to Hazy Liquid	Biorenewable Propylene Glycol	Globally Approved, inquire for China	0.91
ColaLux SAO	Soyamidopropylamine Oxide	Clear Liquid	Ethanol	Global Except no REACH registration	0.82
ColaLux SO	Stearamine Oxide	White Paste (RT)	Propylene Glycol	Globally Approved, inquire for REACH	0.86
ColaTeric CMB	Cetyl Betaine	Clear Liquid	None	Globally Approved	0.66
ColaTeric HBS	Cannabisamidopropyl Hydroxysultaine	Clear Liquid	Propanediol	Limited, per global PC exemptions	0.87

Trade Name	INCI	Appearance	Co-solvent	Global Clearances	ISO 16128
ColaLipid GS	Sodium Grapeseedamidopropyl PG- Dimonium Chloride Phosphate	Clear to Hazy Liquid	Biorenewable Propylene Glycol	Globally Approved, inquire for China	0.91
ColaLux SAO	Soyamidopropylamine Oxide	Clear Liquid	Ethanol	Global Except no REACH registration	0.82
ColaLux SO	Stearamine Oxide	White Paste (RT)	Propylene Glycol	Globally Approved, inquire for REACH	0.86
ColaTeric CMB	Cetyl Betaine	Clear Liquid	None	Globally Approved	0.66
ColaTeric HBS	Cannabisamidopropyl Hydroxysultaine	Clear Liquid	Propanediol	Limited, per global PC exemptions	0.87
ColaTeric OAB-UP	Oleamidopropyl Betaine	Clear Liquid	Propylene Glycol	Globally Approved, inquire for REACH	Not Derived Natural

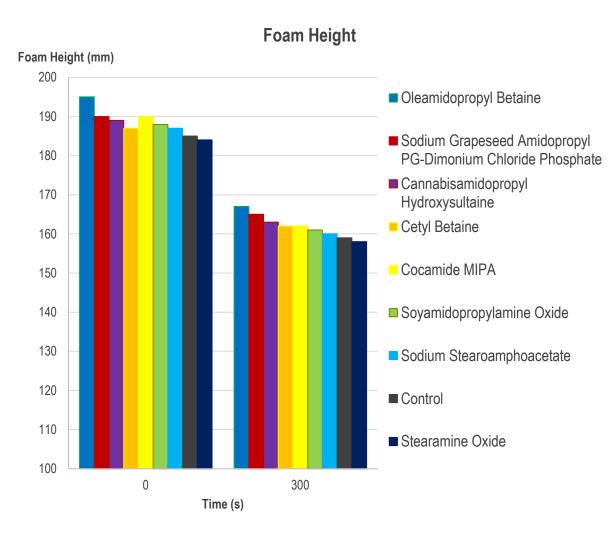
Trade Name	INCI	Appearance	Co-solvent	Global Clearances	ISO 16128
ColaLipid GS	Sodium Grapeseedamidopropyl PG- Dimonium Chloride Phosphate	Clear to Hazy Liquid	Biorenewable Propylene Glycol	Globally Approved, inquire for China	0.91
ColaLux SAO	Soyamidopropylamine Oxide	Clear Liquid	Ethanol	Global Except no REACH registration	0.82
ColaLux SO	Stearamine Oxide	White Paste (RT)	Propylene Glycol	Globally Approved, inquire for REACH	0.86
ColaTeric CMB	Cetyl Betaine	Clear Liquid	None	Globally Approved	0.66
ColaTeric HBS	Cannabisamidopropyl Hydroxysultaine	Clear Liquid	Propanediol	Limited, per global PC exemptions	0.87
ColaTeric OAB-UP	Oleamidopropyl Betaine	Clear Liquid	Propylene Glycol	Globally Approved, inquire for REACH	Not Derived Natural
ColaTeric STA	Sodium Stearoamphoacetate	Yellow Paste	None	North America, Oceania	0.61

Performance Evaluation Phase 1

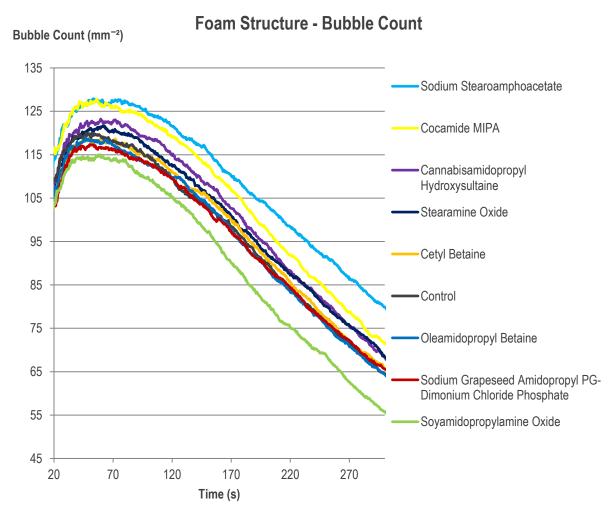

Test Formulation

Trade Name	INCI Name	Α
DI Water	Water	75.85
Colonial AOS-40 UP	Sodium C14-16 Olefin Sulfonate	20.00
ColaTeric CBS	Cocamidopropyl Hydroxysultaine	4.15
Citric Acid	Citric Acid	Qs to pH 6.0
Additives	Vary	0.5% Solid Matter

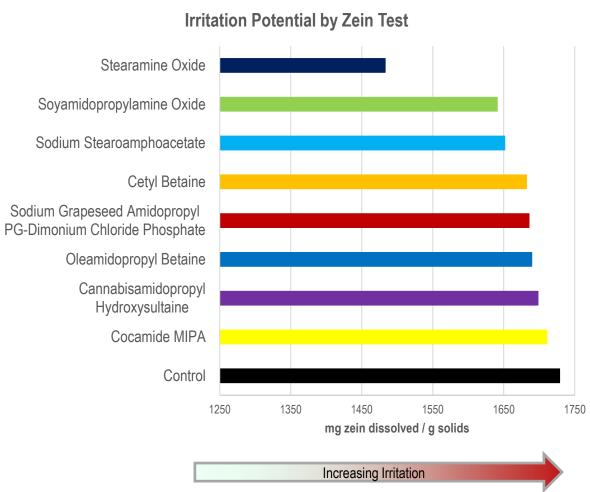
- Base formulation mimics ratios typical to traditional SLS/SLES based formulas
- Additives are evaluated at 0.5% based on prescreening tests
- Cocamide MIPA (ColaMid CMPA) also tested as a typical additive for this system to reduce added salt required to build viscosity


Viscosity Response

- Typical to AOS-based sytems, control performance (black) is extremely sluggish, with 11.0% salt required to achieve peak
- Standard Cocamide MIPA (yellow)
 reduces added salt significantly, but also
 decreases peak performance significantly
- Most additives improve on baseline viscosity performance, with varying impact on salt peak
- ColaTeric STA (It blue) has largest positive impact on peak viscosity
- ColaLux SO (dk blue) decreases added salt to the largest extent


Foam Height and Stability

- Most additives increase initial foam height and maintain increased foam over time
- ColaTeric OAB-UP (md blue) achieves the greatest increase in initial and stable foam heights
- ColaLux SO (dk blue) initial and stable foam decrease is not significant


Foam Structure

- Bubble counts are generally considered along with foam height. Since this group of products are mostly similar, we can reasonably evaluate in isolation
- High initial counts are indicative of denser, cushiony foam
- Counts that remain high over time indicate less coalescence of foam, maintaining dense cushiony foam
- ColaTeric STA (It blue) is a positive outlier,
 while ColaLux SAO (green) is a negative one
- ColaTeric STA (It blue) and ColaMid CMPA (yellow) demonstrate significant initial improvement in density

Irritation Potential by Zein

- Most additives have a minimal impact on irritation potential
- ColaLux SO (dk blue) appears to have the greatest impact, which is significant
- ColaLux SAO (green) and ColaTeric STA (It blue) achieve significant but less dramatic reduction

(Interim) Conclusions

- Amphoterics are essential formulation components, and variants outside of the most popular products require further investigation
- Long-chain variants demonstrate excellent performance in viscosity-building allowing for greater flexibility in formulating
 - Lower solids
 - Replacing traditional anionic surfactants
 - Reducing added salt
- Some long-chain amphoterics also show promising benefits for irritation reduction and enhanced foam texture and stabilization
- Phase 2 testing will evaluate more in-use performance benefits like skin and hair conditioning

Thank you!

Dennis Abbeduto: <u>Dennis@colonialchem.com</u> Product TDS/SDS/Formulations: <u>https://www.colonialchem.com</u> Formula Girls Podcast: https://apple.co/3dUq5fh

