

Surfactants: Meeting Today's Market Needs

Dennis Abbeduto, Personal Care Business Manager, Colonial Chemical Inc

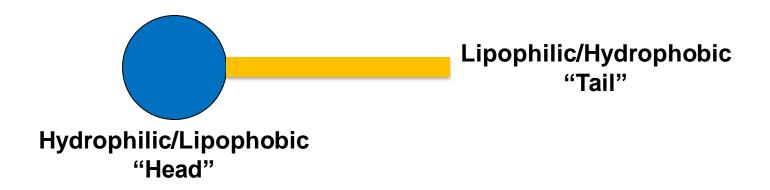
Agenda

- Surfactants Overview
 - What is a surfactant?
 - Surfactant classes and functions
 - Key functional groups
- Question & Answer #1
- Key Market Trends
 - PEG/Dioxane Free
 - Sulfate Free
 - Low Irritation
 - All Natural
 - Low/No Preservative
- Question & Answer #2

Surfactants Overview

What is a Surfactant?

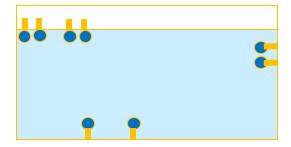
- Surfactant = <u>Surface Active Agent</u>
 - "A chemical compound which when dissolved or dispersed in a liquid is preferentially adsorbed at an interface, lowering surface tension or interfacial tension."
- Surfactants:
 - Make oil and water mix
 - Make water wetter


What are Surfactants Good For?

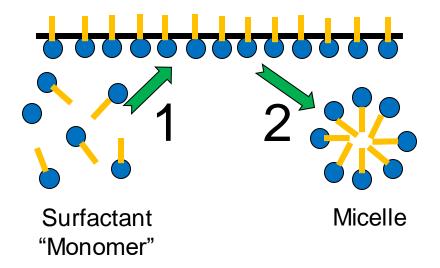
- Wetting
- Foaming
- Dispersion
- Lubrication
- Detergency
- Paper sizing
- Solubilization
- Emulsification

How Surfactants Work

• "Tadpole" structure is key to functionality

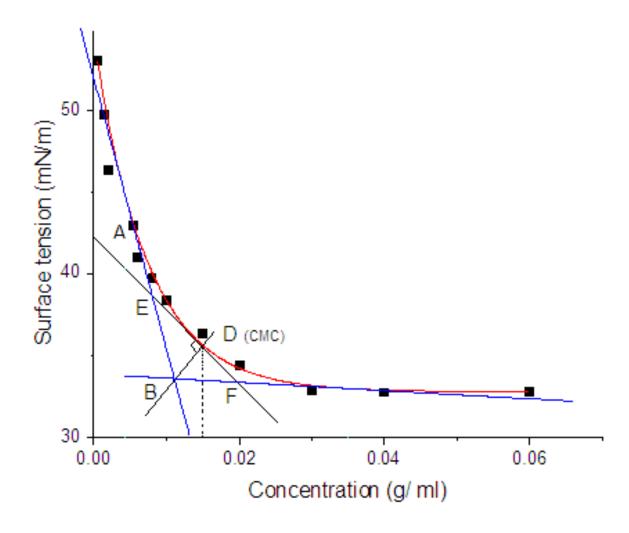


• Relative and absolute sizes of groups dictates function

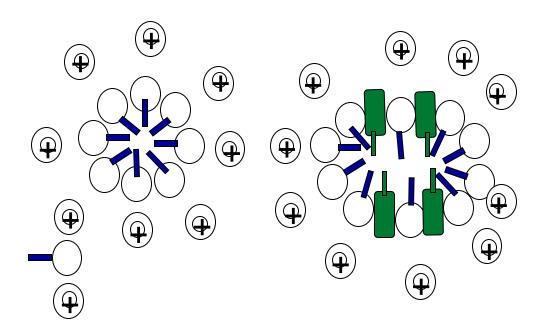


Micelle Formation

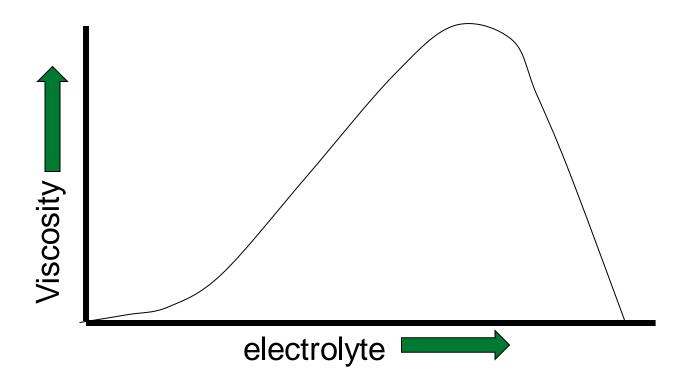
At low concentrations, surfactants migrate to the edges of the water

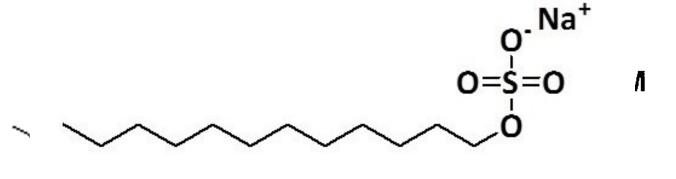


• Once the surfaces are filled, surfactants assemble into spheres

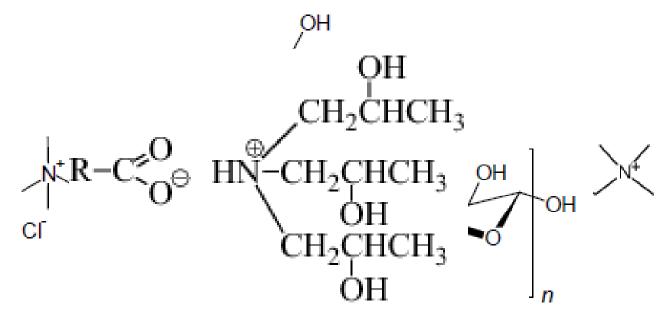

Critical Micelle Concentration

Surfactant Thickening

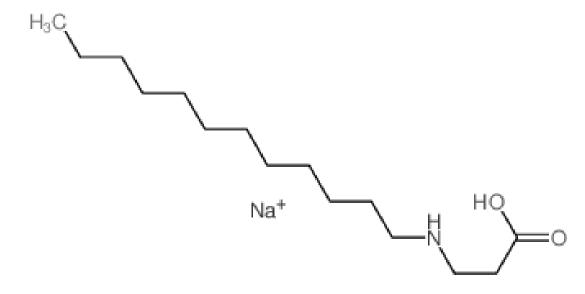

- Micelles can contain dozens or thousands of surfactant "monomers"
- As surfactant concentration increases, new micelle shapes can form
- Charged hydrophilic "heads" are kept apart by electrostatic repulsion
 - Salt reduces electrostatic repulsion
 - Nonionic surfactants (amides) increase packing

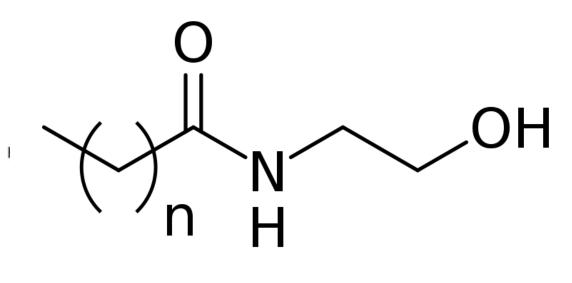

Surfactant Thickening

- Surfactant packing dictates micelle shape and size
- Micelles are always in flux
- Over-salting **reduces** viscosity



- Anionic
 - Most detergent surfactants
 - High foaming for personal care
 - Combine with amphoteric surfactants for optimum aesthetics
- Sulfate
- Sulfonate
- Isethionate
- Glutamate
- Sarcosinate


- Cationic
 - Most conditioning agents
 - Typically moderate or low foaming
 - Variable compatibility with anionic surfactants
- Methyl Chloride
- Methyl Sulfate
- Hydroxypropyl
- Amine salts

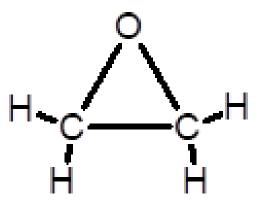


- Amphoteric/Zwitterionic
 - Viscosity, foam enhancement
 - Reduce irritation of anionic surfactants
 - Amphoteric vs zwitterionic
- Betaine
- Phosphobetaine
- Sultaine
- Amphoacetate
- Propionate

- Nonionic
 - Huge variety of chemistry
 - Include ethoxylates
 - Low irritation potential
- Alcohol ethoxylates
- PEG esters
- Polyglycerylesters
- Alkanolamides
- Glucosides

Question & Answer #1

Key Market Trends



Trend: PEG-Free, Dioxane-Free

What is ethoxylation?

- Addition of ethylene oxide (EO) to base molecule
- Most commonly performed on alcohols
 - Natural or synthetic
 - Fatty or short chain
- Production of glycols (ethylene glycol, polyethylene glycol)
- Production of ethanolamines
 - MEA, TEA, DEA
- Production of isethionic acid
- Typically produces new alcohol which can be further reacted
 - More EO
 - Sulfation
 - Carboxylation
 - Esterification.

Ethylene Oxide

Common Ethoxylates and Their Uses

Ingredient	Function	
Steareth-2, Steareth-20	Workhorse o/w Emulsifier Combo	
Polysorbates	Workhorse o/w Emulsifiers	
PEG-40 Hydrogenated Castor Oil	Fragrance Solubilization (End Use)	
Alkylphenol Ethoxylates	Fragrance Solubilization (In Fragrance)	
Sodium Laureth Sulfate	Lower Irritation Sulfate	
Poloxamer	Zero Irritation Surfactant (Oral Care)	
PEG-150 Distearate	Surfactant Thickening	
PEG-120 Methyl Glucose Dioleate	Surfactant Thickening	
PEG-7 Glyceryl Cocoate	Emollient/refatting (Rinse-Off)	
PEG-75 Lanolin	Emollient/refatting (Rinse-Off)	
Dimethicone PEG-7 Isostearate	Emollient/refatting (Leave-on)	
PEG-5 Castor Oil	Emollient/refatting (Leave-on)	

Dioxane Issues

For many ethoxylates, a by-product is 1,4-Dioxane:

Ethylene Oxide : C₂H₄O 1,4-Dioxane : C₄

1,4-Dioxane: C₄H₈O₂

Dioxane Issues

- 1,4-Dioxane is a CMR (Carcinogenic, mutagenic and reprotoxic) substance
 - NTP "reasonably anticipated to be a human carcinogen"
 - IARC 2A "possibly carcinogenic to humans"
 - Known to be a carcinogen in animals
- Multiple organ toxicant (liver, kidneys, central nervous system)
- Toxic to aquatic plants and invertebrates
- Moderately persistent in the environment
- Regulated exposure limits in household and cosmetic products vary worldwide
- Many states have reporting requirements for children's products (MN, ME, OR, VT, WA).

Dioxane Found in Cosmetics

Levels Reported	Number of Products	Percent of Total
0.0 – 1.0 ppm	111	65%
1.1 – 5.0 ppm	32	19%
5.1 – 10.0 ppm	14	8%
10.1 – 25.0 ppm	11	6%
>25.1 ppm	2 (35.2, 35.0 ppm)	1%

SCCS (Scientific Committee on Consumer Safety), Opinion on the Report of the ICCR Working Group: Considerations on Acceptable Trace Level of 1,4-Dioxane in Cosmetic Products, 15 December 2015, SCCS/1570/15

Dioxane Limits in Cosmetics

Based on this information, the following limits have been proposed or enacted for cosmetics

• EU: SCCS opinion from 2015 sets safe limit at 10ppm

• ASEAN: 25ppm limit by June 19, 2020, 10ppm limit by June 19, 2023

• FDA: No guidance but use ICCR info

• California: Safe Cosmetics Act requires notification of products with Prop 65 contaminant

Recent efforts point toward 10ppm limit

• NY State: Cosmetics: 10ppm limit by Dec 31, 2022

Personal Care: 2ppm limit by Dec 31, 2022, 1ppm limit by Dec 31, 2023.

Others??

Considerations for Replacement Selection

- Bio-renewable content
- Toxicity
 - Human
 - Environmental
- Brand positioning
- Ease of use
- Efficiency
- Cost.

Workhorse Emulsification – Small Molecules

Glyceryl Stearate with Stearic Acid

- Key benefit: 100% naturally derived
- Key drawback: pH sensitive Stearic Acid

Polyglyceryl Esters

- Key benefit: Wide variety
- Key drawback: Generally darker in color

Amino Acid Esters

- Key benefit: Can be all naturally derived
- Key drawback: Pricey

Phosphate Esters

- Key benefit: High purity
- Key drawback: Phosphate name.

Workhorse Emulsification – Hydrophobically Modified Polymers

Synthetic (acrylates)

- Key benefit: low cost
- Key drawback: poor sustainability (currently)

Natural (cellulosics, crosspolymers)

- Key benefit: biobased content
- Key drawback: cost

Inorganic (silicones)

- Key benefit: luxurious feel
- Key drawback: negative perception.

Fragrance Solubilization

- Some emulsifiers can function as fragrance "solubilizers"
- Fragrance solubilization is really micro-emulsification
- Typically looking for high HLB emulsifiers
- Polyglyceryl esters
 - Key benefit: High biobased content
 - Key drawback: No "workhorse" product yet
- Small molecules
 - Key benefit: Ease of handling
 - Key drawback: Few choices
- Surfactant combinations
 - Key benefit: Optimized performance
 - Key drawback: Adds several ingredients.

Low Irritation Cleansers

Alkyl Glucosides

- Key benefit: 100% biobased
- Key drawback: Difficult to formulate with

Alkyl Glucoside Derivatives

- Key benefit: Expanded application range
- Key drawback: Few suppliers

Sulfosuccinates

- Key benefit: Good foam possible
- Key drawback: Poor stability in acid/base

Amino Acid Surfactants

- Key benefit: Excellent stability
- Key drawback: Costly.

Surfactant Thickening

Synthetic Polymers (HASE/HEUR)

- Key benefit: Highly customized performance
- Key drawback: Mostly or purely petrochemical feedstocks

Alkanolamides

- Key benefit: Economical
- Key drawback: Potential secondary amine issues

Amine Oxides

- Key benefit: Excellent performance
- Key drawback: Not well characterized for personal care

Long-Chain Amphoterics

- Key benefit: Very effective viscosity boosters
- Key drawback: Low active products or contain solvents.

Emolliency/Refatting

Glyceryl Oleate/Polyglyceryl Oleate

- Key benefit: 100% biobased
- Key drawback: Easy to overwhelm system

Phosphate amphoterics

- Key benefit: Very high substantivity
- Key drawback: Negative association with phosphate

Lecithin/Phospholipids

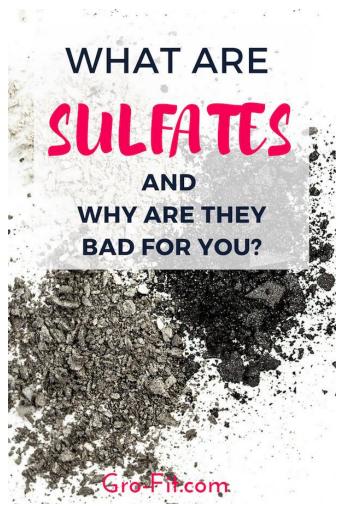
- Key benefit: All natural
- Key drawback: Can be pricey

Long-Chain Amphoterics

- Key benefit: Economical
- Key drawback: Lack of efficacy data

Trend: Sulfate-Free

Why Sulfate-Free?



SULFATES, YOUR HAIR & YOU

Why sulfates are bad for your hair and how to find the best, healthiest shampoo for you

Going Sulfate-Free

- There are many challenges associated with moving from traditional sulfate surfactants to next generation products
 - Different impurities
 - Different foam properties
 - Different functional groups
 - Different packing capabilities
 - Different salt responsiveness
 - Different solubility parameters.

Considerations for Replacement Selection

- Bio-renewable content
- Toxicity
 - Human
 - Environmental
- Brand positioning
- Ease of use
- Efficiency
- Cost.

Common Sulfate Replacements

- Anionic
 - High foaming for personal care
 - Combine with amphoteric surfactants for optimum aesthetics
- Watch for:
 - Acid pKa values
 - Instable groups
 - Impurities
 - Hard water tolerance
 - Size of head group.

Sulfate Free Examples - Sulfonate

Key Benefits

- Can be very low cost
- Extremely stable

Key Drawbacks

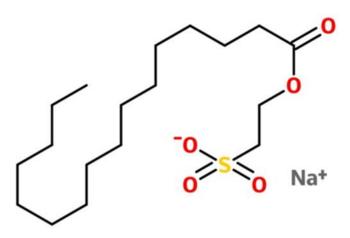
- Petrochemical olefins dominate
- Slower viscosity response

$R-CH_2-CH=CH-CH_2-S-O$

Watchouts

- Sultones should be kept as low as possible
- Start with increased amount of secondary surfactants
- Krafft point issues.

Sulfate Free Examples - Isethionate


Key Benefits

- Widely used
- Residual fatty acid offers added benefits

Key Drawbacks

- Ester functionality can be instable
- Residual fatty acid offers added challenges

- Try to keep pH near neutral
- Formulate with chelant
- Watch fatty acid content.

Sulfate Free Examples - Glutamate

Key Benefits

- High biobased content
- Low irritation

Key Drawbacks

- Relatively costly
- Poor viscosity response

- Multiple pKa values
- Combine with additional sulfate-free surfactants
- Check biobased content if important.

Sulfate Free Examples - Sarcosinate

Key Benefits

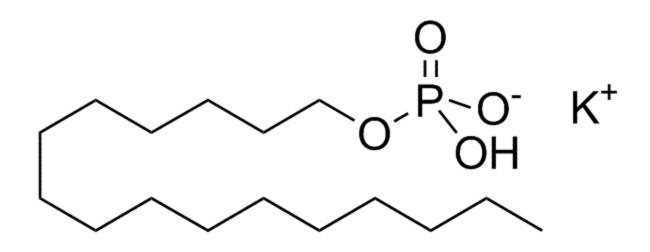
- Unique advantages in syndet bars
- Low in-use toxicity

Key Drawbacks

- Partially petrochemical
- Poor viscosity response

- Avoid using too much in gel cleansers
- Foaming can be enhanced by salt addition
- Synergistic surface tension reduction has been observed.

Sulfate Free Examples - Phosphate


Key Benefits

- Can be high biobased
- Low irritation

Key Drawbacks

- Association with inorganic phosphates
- Typically need to be ethoxylated

- Water hardness may impact solubility
- Can be supplied in acid or neutral forms
- Poor viscosity response.

Surfactant Thickening

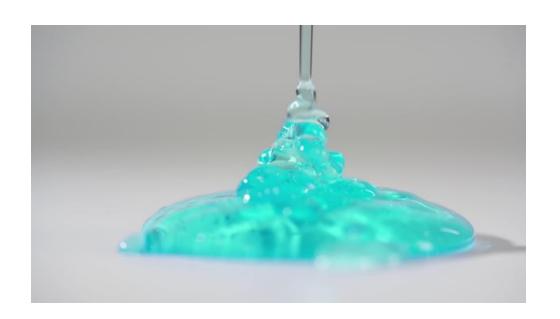
Natural Polymers (Gums)

- Key benefit: Natural
- Key drawback: Non-Newtonian flow characteristics

Synthetic Polymers (HASE/HEUR)

- Key benefit: Highly customized performance
- Key drawback: Petrochemical feedstocks

Alkanolamides


- Key benefit: Economical
- Key drawback: Potential secondary amine issues

Amine Oxides

- Key benefit: Excellent performance
- Key drawback: Not well characterized for personal care

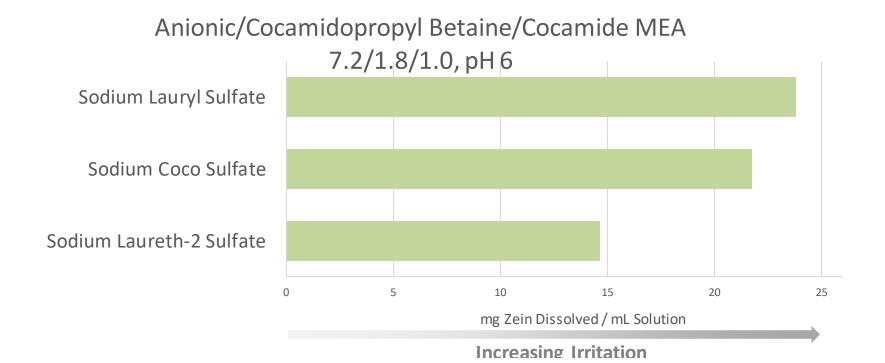
Long-Chain Amphoterics

- Key benefit: Very effective viscosity boosters
- Key drawback: Low active products or contain solvents.

Trend: Low Irritation Cleansers

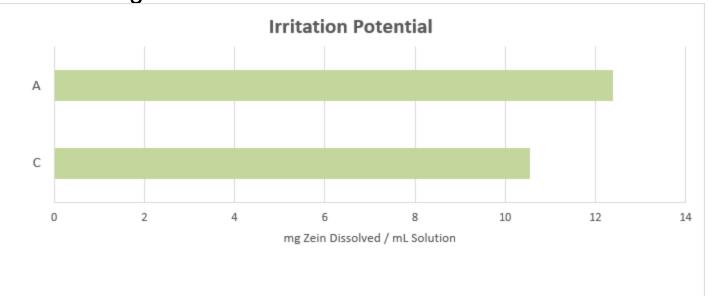
Demonstrating Reduced Irritation

- Zein Test for In-vitro Irritation
 - Uses zein (corn) protein
 - Uses protein denaturization to assess irritation
 - Zein protein is insoluble in water
 - As surfactant denatures the protein, water solubility increases
 - Remaining insoluble protein is filtered, dried, and weighed
 - Results are presented here in mg Zein dissolved / mL product


Model Formulation

Component	Concentration
Anionic surfactant or blend	7.2% solids
Amphoteric (Cocamidopropyl Betaine)	1.8% solids
Alkanolamide (Cocamide MEA)	1.0% solids
Water, citric acid	Qs to 100%, pH 6

Reducing Irritation of Sulfates


- Even if "sulfate-free" is not a priority, NY State dioxane limits are coming:
 - 2ppm limit by Dec 31, 2022
 - 1ppm limit by Dec 31, 2023
 - These limits will be very hard to achieve, even with "low dioxane" ether sulfates
- SLES is preferred to SLS because of reduced irritation potential

Ingredient Selection Matters

- Coco-Sulfate based system
 - Sodium Coco-Sulfate, Coco-Glucoside, Cocamidopropyl Hydroxysultaine
 - At 11.6% solids measures 12.4 mg zein / mL solution (System A)
 - Betaine/amide system at 10% solids measures ~22 mg zein / mL solution
- Replaced 25% of surfactant solids with low irritation anionic (System C)
 - Reduced test result to 10.5 mg zein / mL solution

Trend: All Natural Cleansers

Considerations for Replacement Selection

- Bio-renewable content
- Toxicity
 - Human
 - Environmental
- Brand positioning
- Ease of use
- Efficiency
- Cost.

What's Natural

- No FDA definition for personal care
- Factors to consider
 - % Biobased
 - ISO 16128
 - Feedstocks
 - By-products
 - Consumer experience
 - Avoiding the "all-or-nothing" approach

Future of Natural Surfactants?

- Biosurfactants
- Microorganisms convert carbon sources to a variety of surfactant molecules
 - Glycolipids
 - Rhamnolipids
 - Sophorolipids
 - Sphingolipids
- Carbon can come from wide variety of sources
 - Traditional triglyceride oils, including waste oils
 - Sugars, starches, carbohydrates
 - Hydrocarbons
- Currently limited by low yield

Trend: Low/No Preservative Formulations

Dwindling Preservative Choices

- Common preservatives have come under fire for a variety of real or perceived risks
 - Formaldehyde donors: carcinogenicity
 - Parabens: carcinogenicity
 - Isothiazolinones: contact sensitization
 - Phenoxyethanol: irritation
 - Organic acids: irritation or sensitization
- Formulators are faced with a dwindling basket of "friendly" preservatives

Surfactants as Preservatives

- A variety of surfactants can function as preservatives
- They function best in "hurdle" systems with multiple chemistries
- Nonionic surfactants
 - Caprylyl Glycol
 - Glyceryl Laurate
- Amphoteric surfactants
 - Capryloyl Glycine
 - Cocamidopropyl PG-Dimonium Chloride Phosphate
- Cationic Surfactants
 - Benzalkonium Chloride
 - Polyquaternium-80
- Anionic surfactants
 - Citrate monoesters

Thank You!

Question & Answer#2

More questions?: <u>dennis@colonialchem.com</u> Product info: <u>http://www.colonialchem.com</u>

